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We report on the behavior of a single-wavelength Rayleigh-Taylor flow at late times. The calculations were
performed in a long square duct �����8��, using four different numerical simulations. In contradiction with
potential flow theories that predict a constant terminal velocity, the single-wavelength Rayleigh-Taylor problem
exhibits late-time acceleration. The onset of acceleration occurs as the bubble penetration depth exceeds the
diameter of bubbles, and is observed for low and moderate density differences. Based on our simulations, we
provide a phenomenological description of the observed acceleration, and ascribe this behavior to the forma-
tion of Kelvin-Helmholtz vortices on the bubble-spike interface that diminish the friction drag, while the
associated induced flow propels the bubbles forward. For large density ratios, the formation of secondary
instabilities is suppressed, and the bubbles remain terminal consistent with potential flow models.
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I. INTRODUCTION

The acceleration of a fluid into a second fluid of greater
density ��2��1� produces the Rayleigh-Taylor �RT� instabil-
ity �1�, a problem of significance to the inertial confinement
process �2�, and supernovae explosions �3�. Small perturba-
tions of amplitude h0 and wave number k=2� /� at the in-
terface between the fluids grow exponentially in time until
kh0�1

h�t� = h0 cosh��t� . �1�

In the absence of surface tension, viscosity, or other mitigat-
ing effects, the associated growth rate �4� is �=�Agk, where
g is the acceleration and the Atwood number A=

�2−�1

�2+�1
param-

etrizes the density difference between the fluids. At larger
amplitudes, the flow is differentiated into bubbles of light
fluid rising into the heavy, and spikes, which are fingers of
the heavy fluid descending into the light fluid. Drag-
buoyancy �5� models and potential flow theory �6� predict
that for kh0�1, the perturbations undergo a nonlinear satu-
ration toward a terminal bubble velocity given by

vb = Fr�Ag�/�1 + A� , �2�

where Fr is the bubble Froude number. Numerical simula-
tions �7� have shown that �2� holds for bubbles for all A, with
Fr=0.56 for a square mode initial perturbation. The models
also give corresponding expressions for spike behavior, al-
though at large density differences, spikes do not stay termi-

nal, but approach free fall �hs�0.5gt2�. Thus, bubble and
spike growths are identical at small A, but diverge as A→1.

This simple picture of single-wavelength growth is sig-
nificant because it can be extended through dimensional ar-
guments to improve our understanding of the turbulent RT.
Indeed, the so-called bubble competition �8� models treat
dominant bubbles in a chaotic bubble front as essentially
“single modes” isolated from the effects of neighbors. Such
dominant bubbles grow self-similarly with their diameter
Db���hb, according to experiments and simulations. Thus,
replacing Db��� with hb for leading bubbles in �2�, we get

hb = �Agt2, �3�

where � is the growth constant. Experiments �9� obtain
��0.05 and Db /hb��1+A� /4 whereas simulations �10� re-
port ��0.03–0.09 depending on the initial conditions.

The importance of the single-mode behavior can be quan-
tified by inserting the self-similarity condition into Eq. �2�.
Then, for a constant Db /hb, the solution is given by Eq. �3�
with

� =
Fr2

8

�1 + �2

�2

Db

hb
. �4�

However, as described by �9–12�, a value of Fr�1 is re-
quired to match the measured values of � and Db /hb, which
is larger than the value Fr�0.56 calculated from potential
flow. Analysis of leading bubbles from numerical simulations
and experiments that accounts for the entrainment of the
heavier fluid by bubbles confirm this higher value of Fr.
Thus, leading bubbles in a turbulent flow resemble the iso-
lated buoyant plumes of Scorer’s experiment �13� �Fr=1.1�,*Center for Nonlinear Studies.
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rather than an array of tightly packed bubbles �Fr=0.56�.
Such isolated plumes/bubbles have an increased Fr due to
reduced counterflow drag from spike flow surrounding the
bubbles—as the area separating neighboring bubbles is in-
creased, the spike velocity is diminished due to mass conser-
vation. This is evident in the experiments of �14�, who ob-
served an increase in the value of Fr of a lenticular bubble
from 1

2 to 2
3 , as the walls of the container were moved away.

Similarly, the observed aspect ratios �Db /hb� of turbulent RT
bubbles range from 1

3 to 2
3 , in contrast to the single-mode

value of �1.
Thus, the single-mode description of leading bubbles in

turbulent RT is promising, but must be revised towards a
higher Fr and lower Db /hb. Simulations and experiments of
single-wavelength RT flows �7,15� have focused on bubble
evolution at early and intermediate times. In this paper, we
use three-dimensional �3D� numerical simulations to study
the late-time single-mode RT problem in a regime of rel-
evance to the turbulent flow, i.e., with hb�2−4Db. Under
these conditions, the single-wavelength flow, much to our
surprise, exhibits deviations from the expected terminal ve-
locity. Bubbles �and spikes at low A� accelerate before ap-
proaching a Fr�1, closer to the turbulent value. We provide
a phenomenological description of our observations, and an
explanation for the late-time bubble acceleration.

II. NUMERICAL TECHNIQUES AND PROBLEM SETUP

The numerical algorithms used in this study have been
described in detail in �16�, and only a brief overview is pro-
vided here. Three of the numerical codes used the MILES
�monotone integrated large eddy simulation� technique,
while the fourth was a direct numerical simulation �DNS�.
RTI-3D �17� is a multiphase, incompressible, Eulerian solver
and uses Van Leer flux limiters to prevent nonphysical oscil-
lations. FLASH �18� and PROMETHEUS �19� solve the
compressible Euler equations using the piecewise parabolic
method on a 3D Cartesian grid. FLASH is a parallel code
and has the added feature of adaptive mesh refinement,
handled by the PARAMESH �20� library of routines. NAV/
STK is a finite-volume solver for the full Navier-Stokes
equations with a physical viscosity, in addition to the capa-
bility to handle surface tension effects. The MILES algo-
rithm has an implicit viscosity due to subgrid smoothing of
fine scales that may be written from dimensional arguments
�16� as

	 � �Ag
3, �5�

where 
 is the zone size. It has been demonstrated that the
numerical viscosity in these codes behaves much like a
physical viscosity, not only giving the correct linear growth
rates �modified by viscosity�, but accurately predicting the
Kolmogorov cutoff wave number in turbulent calculations
�16�. In this work, we have performed additional tests to
characterize the behavior of the numerical viscosity in the
MILES codes, and these are described in the Appendix.
Table I provides a summary of the numerical techniques dis-
cussed above.

The three-dimensional simulations were initialized with a
square-mode initial perturbation of amplitude h0 and wave
number k, of the form

h�x,y� = h0�cos�kx� + cos�ky�� . �6�

This form of the perturbation places the bubble at the center
of the computational domain, while the spikes are placed at
the corners. The perturbation amplitudes were chosen to be
such that kh0�1. To study the late-time behavior of RT,
the perturbations were set up in a long, square duct
�����8��, with periodic boundary conditions in the lateral
directions, and no-flow boundary conditions in the direction
of gravity. The perturbation wavelengths, Atwood numbers
used, and grid resolutions employed in the codes are listed in
Table II. The compressible codes were run in a nearly incom-
pressible limit, with an adiabatic condition �16� for the ver-
tical density profile to approximate hydrostatic equilibrium.

TABLE I. Description of numerical codes used in this study.

Governing
equations AMR

Surface
tension Compressible

RTI-3D Euler No No No

FLASH Euler Yes No Yes

NAV/STK Navier-Stokes Yes Yes No

PROMETHEUS Euler No No Yes

TABLE II. Simulation parameters used in this study.

Atwood
number

Perturbation
wavelength

�cm�
Gravity
�cm/s2� Resolution

RTI-3D 0.005 10.0 2.0 32�32�256

0.1

0.25

0.5

0.75

0.9

FLASH 0.1 0.25 1.0 128*128*1024

0.25

0.5

0.9

NAV/STK 0.1 48*48*384,

0.2 1.0 1.0 64*64*512

0.3

0.4

0.5

0.6

0.7

0.8

0.9

PROMETHEUS 0.5 0.25 1.0 60�720
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The background pressure is chosen to be 500 dynes/cm2,
limiting the vertical density variation to less than 6%.

III. COMPUTATIONAL RESULTS

Figures 1 and 2 are contour plots of density � �1+�2

2
� from

RTI-3D and NAV/STK simulations at A=0.1 and 0.2, respec-

tively. The panel �a� is at an early-time while �b� is towards
the end of the simulation. The realizations are in a plane
passing through the center of the bubble, while the spikes are
located outside this plane and near the corners of the box.
The time histories of bubble amplitude and velocity from
RTI-3D are shown in Figs. 3�a� and 3�b�, respectively, at A
=0.5. For hb /Db�1, bubble velocities are constant and in
agreement with �2�. As bubbles exceed this aspect ratio, they
accelerate, before approaching a higher Fr late in time.

Figure 4 summarizes the variation of Fr with A for mildly
nonlinear bubbles �hb
Db� from the MILES and DNS

FIG. 1. �Color� Images of bubble front at early time �during
terminal velocity� and late time �acceleration stage� from RTI-3D.
A=0.1. Contour levels shown are in gm/cm3.

FIG. 2. Images of bubble front at early time �during terminal
velocity� and late time �acceleration stage� from DNS. A=0.2. Lo-
cation of original interface is at y=4 cm.

FIG. 3. Time histories of �a� bubble penetration and �b� bubble
velocity showing distinct stages of single-wavelength bubble
growth. Results shown are from RTI-3D at A=0.5. The dashed line
in �a� represents the bubble wavelength �b, beyond which the reac-
celeration is observed. The terminal velocity from potential flow
theory is included in �b� for comparison.
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codes, and it shows agreement with the drag-buoyancy �5�
and potential flow �6� type models. Note that the models
assume a Bessel function for the initial interfacial perturba-
tion, while our calculations are initialized with a square
mode. This difference in the form of the perturbation does
not lead to a discrepancy in the results. In this regime,
bubbles have a Fr of 0.56, independent of A. For bubbles,
balancing the buoyancy and drag forces gives

ḧb = Ag − Cḣb
2 �2

�1 + �2

Area

Volume
, �7�

where C is a drag coefficient. Choosing C�2� as suggested

by �5�, Area/Volume�1/Db, and setting ḧb=0, we obtain
�2� for vb. This simple model ignores the late-time onset of
secondary instabilities in the form of Kelvin-Helmholtz
rollups at low A, and bubble-spike coupling at high A. A
similar force balance analysis for spikes reveals identical
spike behavior at low A. However, for A�0.5, the drag
forces due to bubbles vanish, causing the spikes to accelerate
�7�, ultimately approaching free-fall �hs= 1

2gt2� as A→1.
Note that this is in agreement with the recent calculations of
�21�, who use boundary-integral methods to investigate the
late-time behavior of the single-mode RT flow at infinite
density ratios.

According to Fig. 3, Eq, �7� describes the bubble behavior
only up to intermediate times, but not the late-time accelera-
tion and a possible asymptotic velocity saturation. This de-
viation from �7� is observed consistently in all of the numeri-
cal simulations shown in Fig. 5, which is a plot of the Froude
number variation with bubble aspect ratio �hb /Db�. Further-
more, the simulations consistently show that the onset of
bubble acceleration is at hb /Db�1, and that bubbles ulti-
mately appear to approach Fr�1. However, it is not conclu-
sive from Figs. 3�b� or 5 that there is a saturation observed at
Fr�1, and if it is more stable than the first saturation at Fr
�0.56. We expect higher aspect ratio calculations will re-
solve this uncertainty. We note that in all the codes, this

behavior is observed for A�0.75, and not at higher density
differences. This is evident from the high Atwood cases
shown in Fig. 6, which do not show any bubble acceleration
late in time. A complete discussion of this Atwood number
effect is deferred until Sec. IV. The marker arrows in Fig. 5
point to the turbulent values of Fr and hb /Db, obtained from
simulations and experiments, for comparison.

Such late-time nonstationary behavior of single-mode RT
spikes and bubbles were observed and reported in �22�, who
ascribe the deviation from steady state to changes in the tip
curvature of bubbles and spikes. We argue in the following
that it is the formation of secondary instabilities rather than
the curvature of the bubble/spike tip that describes the ob-
served behavior. The onset of bubble oscillations may also be
observed at late-time in the two-dimensional �2D� DNS of
�23�. Finally, 2D and 3D numerical simulations using the

FIG. 4. Bubble Froude number �vb /�Ag� / �1+A�� for
hb /Db�1 at different Atwood numbers from numerical simulations
and potential flow theory �6�.

FIG. 5. Froude number �vb /�Ag� / �1+A�� vs hb /Db from nu-
merical simulations. Hollow symbols represent MILES, while the
solid line indicates DNS. All calculations are for A
0.5 and show

onset of bubble acceleration at
hb

Db
�1.

FIG. 6. Froude number �vb /�Ag� / �1+A�� vs hb /Db from nu-
merical simulations using the FLASH code at different A.
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MAH-3 code �24� also show an increase of bubble velocities
at late-time. The 2D NS of �22� suggest a strong correlation
between bubble/spike curvature and their velocity variations.
While the bubbles appear more pointed after the onset of
acceleration in Fig. 1, the change in shape is less dramatic in
the DNS calculations shown in Fig. 2. Thus, it is not evident
if the bubble tip curvature is a determinant of the observed
behavior reported here.

To eliminate numerics as a possible explanation of our
observations, several tests were performed on the codes.
First, the size of the domain was doubled to determine end
wall effects, if any. Second, the MILES calculations were
repeated at a higher resolution to reduce the effective nu-
merical viscosity �details in the Appendix�. Both these stud-
ies reproduced the results described above: Saturation veloc-
ity for hb /Db�1 and bubble acceleration at late times.
Finally, a numerical experiment was performed in which a
buoyant spherical bubble was allowed to rise in a large con-
tainer. The experiments of �14� report a constant value for
the Froude number of a lenticular bubble of 2 /3. Our simu-
lations show a similar behavior, as the bubble rose self-
similarly with a nearly constant Fr of 0.8. This suggests that
the late-time acceleration observed for the RT bubble is not a
result of numerical artifacts.

This acceleration of bubbles has not been reported in ex-
periments of single-mode RT, since most experiments report
bubble velocities up to hb /Db�1. Planar laser induced fluo-
rescence �PLIF� images from the drop-tank experiments of
�15� show bubbles which appear square with an aspect ratio
close to unity. The closest experimental analog to our calcu-
lations is the study of rising air bubbles in a long tube filled
with water �14�. The authors of that paper who were inter-
ested in the question of how long it would take to empty
such a tube of liquid report a constant Fr�0.46 for the rising
column of air. However, those experiments were at A=1, a
regime in which we do not observe any acceleration either.
Since these experiments had surface-tension effects, some of

the high Atwood number DNS calculations were repeated
with the addition of surface tension. These calculations
showed only a slight decrease in the bubble acceleration with
the inclusion of surface tension. We conclude this section by
pointing out the need for single-mode RT experiments to
study the late-time behavior of bubbles and spikes at all At-
wood numbers.

IV. DISCUSSION: EFFECT OF SECONDARY
INSTABILITIES

The coefficient C in �7� must describe various types of
drag including form drag associated with the frontal area and
friction drag associated with the total area of the bubbles. For
instance, for a bluff object in wind tunnel flow, the total drag
force may be written as �25�

F = 	Cform
Db

hb
+ 4Cfriction

hb

Db

hb�

2 �2

�1 + �2

1

hb
. �8�

Note that the above expression leads to a bubble acceleration
at small aspect ratios �due to the form drag term� and a
terminal velocity at large aspect ratios �due to the friction
drag term�. However, such a formulation by itself does not
account for the Atwood number dependence of bubble accel-
eration observed in our simulations. We propose an explana-
tion that includes form and friction drag effects, but also
describes the change in bubble behavior due to changes in
the density differences.

In this paper, we argue that at low-density differences, the
formation of Kelvin-Helmholtz �K-H� rollups on the bubble-
spike interface acts to accelerate the flow through two
complementary mechanisms—reduction of the contact fric-
tion between bubbles and spikes and formation of a momen-
tum jet due to induced flow that propels the bubbles forward.
In the first scenario, K-H structures provide the rolling mo-
tion that mitigates the friction drag between bubbles and

FIG. 7. Contours of volume
fraction �top row� and negative
second eigenvalue �bottom row�
from 2D NS of a plane shear
layer.
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spikes, similar to the friction-reducing action of such vortical
structures caused by dimples on a golf ball. From �8�, it is
evident that while form drag is important for small bubble
aspect ratios, it is the friction term that dominates the drag
force late in time �hb /Db�1�. In the second scenario, the
induced flow due to the K-H vortex ring creates a vertical
momentum jet that propels the RT bubble forward. Such a
“collimation of momentum” mechanism was proposed for
the RT bubbles in a turbulent front in �26�. At large density
differences, the Kelvin-Helmholtz instability is suppressed
inertially, allowing the bubbles to coast with a terminal ve-
locity.

We now proceed to give a more formal treatment to the
ideas suggested above. First, the density effect on the linear
and nonlinear growth of a shear layer is described here
through 2D numerical simulations. The calculations were
performed using RTI-3D in a square domain �����, with
periodic boundary conditions in the horizontal direction, and
no-flux conditions in the direction of the velocity gradient. A
velocity interface is established along the center of the do-
main, while the stream function is perturbed with a single
wavelength. The velocity contrast between the two streams
of fluid is spread over three numerical zones, corresponding
to a piecewise linear velocity profile, while also ensuring the
length scale of velocity variation is small in comparison to
the perturbation wavelength. The shear velocities were cho-
sen to be ±1 m/s. A sharp density contrast is superimposed
on this background condition, and both positive and negative
Atwood numbers were studied. Since, in the Rayleigh-Taylor
flow, the shear force between bubbles and spikes and the
buoyancy force driving the flow are orthogonal, our 2D shear
calculations could be performed in the absence of gravity.

The top panel in Fig. 7 shows volume fraction contours at
A=0, 0.5, and 1, respectively. It is necessary for our objec-
tives to distinguish between the presence of vorticity with the
formation of a vortex core in such flows �for instance, there
is considerable vorticity at A=1 due to the large shear be-
tween the fluid streams, but no vortex�. It is a K-H vortex
�and not vorticity alone� that causes drag reduction in RT
flows due to its rolling motion, and the resultant bubble ac-
celeration. We use the definition of �27� who identify con-
nected regions with two negative eigenvalues of the velocity
gradient tensor, as a vortex. In other words, if �1��2��3
are the three eigenvalues of S2+D2, where S and D are the
symmetric and antisymmetric components of the velocity
gradient tensor, then a vortex core is a region with �2�0.
This definition ensures that a vortex is a region of a pressure
minimum while eliminating factors that cause false positives
due to �a� unsteady straining and �b� viscous effects.

Contours of �2�0 are shown in the bottom panels of Fig.
7, and clearly demonstrate the presence of vortical structures
at A=0 and 0.5, but none at A=1. As the flow is allowed to
evolve later in time, the high-speed kinks observed in Fig.
7�f� are trapped in the low-speed stream �and vice versa� and
are convected along with the slow-moving fluid. However,
this happens late in time, is clearly a nonlinear effect, and
does not result in the formation of vortex cores at A=1. In
contrast, the vortex cores observed in Figs. 7�d� and 7�e� are
the result of Kelvin-Helmholtz overturning early in time.
Both the A=0 and A=1 cases were repeated with higher

values of shear �2� and 4��. It was found that while the
growth rate of the low density contrast cases scaled with 
U,
the infinite density difference case showed no variation with
the velocity difference.

The growth rates of the shear layers in Fig. 7 may be
quantified by the amplification of the rms vertical velocity
fluctuations �v�2� / �v0�

2� at the interface between the two flu-
ids. Figure 8�a� is a semilogarithmic time history plot of the

FIG. 8. �a�. Amplification of centerline velocity fluctuations for
the Kelvin-Helmholtz problem at different density differences and
�b� the corresponding growth rates ci as a function of A.
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amplification of velocity fluctuations at different density dif-
ferences, and shows a consistent decay with increasing den-
sity contrasts. The late-time amplification observed for A
=1 is a result of the nonlinear effect described above, and
must be distinguished with the early onset of amplification
seen in the other cases.

Growth rates deduced from Fig. 8�a� are shown in
Fig. 8�b� as a function of the Atwood number. The linear
stability analysis of �4� considers normal modes of the form
exp i�kxx+kyy+cit�, and obtains for the imaginary part of the
growth rate, ci, in the absence of surface tension and gravity

ci = ±�− kx
2�
U�2 �1�2

��1 + �2�2 . �9�

The negative root of �9� results in exponential growth of
perturbations, and shows good agreement with the numeri-
cally obtained growth rates in Fig. 8�b�. Note that �4� con-
sidered a sharp velocity interface, while the numerical simu-
lations were initialized with a piecewise linear velocity
profile. However, care was taken to ensure that kxL�1,
where L is the initial spread of the shear layer. In Fig. 8�b�,
we also compare the large-Reynolds number result of �28�,
who used a tangent hyperbolic initial velocity profile. Note
that some calculations were also repeated with a reversal of
the density gradient, which yielded growth rates identical to
the standard cases, consistent with the symmetry of �9� with
respect to �1 and �2.

We now revisit the 3D single-mode Rayleigh-Taylor
�R-T� problem, with insight into the behavior of density ef-
fects on Kelvin-Helmholtz instabilities. Figures 9�a� and 9�b�
are surfaces of �=

�1+�2

2 from the R-T calculations at A=0.1
and 1.0, respectively, and clearly show the formation of vor-
tical structure at low-density differences only. The realiza-
tions in Fig. 9 were chosen at times where the bubbles had
penetrated to the same extent for both the low and high At-
wood number simulations. Furthermore, our image analysis
shows that at A=1, kinks similar to those observed in Fig.
7�e� form at the bubble-spike interface. For low A, the ob-
served acceleration occurs when enough time tcritical has

passed to allow for sufficient e foldings �n� of the Kelvin-
Helmholtz instability, and this corresponds to hb /Db�1.
Equation �9� and Fig. 8�b� suggest that for A→1, tcritical

=n /ci→�. From Fig. 8�b� it is also clear that for low A, ci is
only weakly dependent on A, and thus tcritical is roughly con-
stant. This explains why the onset of acceleration is at
hb /Db�1.

Figure 10 shows the time history of the percentage vol-
ume of the computational domain that is occupied by vorti-
ces �identified through the condition �2�0�, for A=0.005
and 1.0. The low Atwood number simulation shows a dra-
matic increase in this quantity close to hb /Db�1, while the
A=1 case shows no such trend.

FIG. 9. Isosurfaces of volume
fraction �=0.5� from the single-
mode Rayleigh-Taylor calcula-
tions at A=0.1 �a� and A=1 �b�.

FIG. 10. Variation of vortex core size at A=0.005 and A=1 with
the bubble aspect ratio.
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V. SUMMARY

We have performed 3D numerical simulations using four
different codes of a RT unstable single mode to the late-time
regime hb /Db�1 characteristic of the turbulent RT instabil-
ity. The terminal velocity is found to depend on the value of
A and hb /Db with the differences being attributed to a sec-
ondary instability similar to Kelvin-Helmholtz instability.
The behavior has been observed in previous simulations
�22–24� that extend to hb /Db�1 but not in experiments
�14,15� where hb /Db�1 or where A=1. The results are sum-
marized as follows.

The behavior of the 3D single-mode simulations is quan-
tified by plotting Fr scaled from Eq. �2� as the amplitude
grows from the linear regime to hb /Db�2. For hb /Db
1,
our numerical simulations obtain a terminal velocity with
Fr�0.56 for all A, in agreement with potential flow theory
�6� and drag-buoyancy models �5�. The subsequent behavior
for hb /Db�1 depends on A. For A�1, Fr remains near 0.56
for all amplitudes consistent with potential flow. For A�1,
bubbles accelerate away from a terminal velocity, with the Fr
approaching near unity as observed for individual RT
bubbles in a chaotic flow �9,10,16� and for plumes �13� at
A�1. Due to limitations in computational capabilities and
late-time unsteadiness due to secondary instabilities, we have
not been able to determine conclusively what the asymptotic
nature of this flow is under these conditions.

We examined two possible explanations for these obser-
vations. First, we considered a drag coefficient within the
buoyancy-drag model which varies with the aspect �similar-
ity� ratio of the bubble. This description allows for a reduced
drag as the amplitude �aspect ratio� increased, but it does not
explain the variation with Atwood number. Second, we con-
sidered the possibility that the reduced drag was due to ap-
pearance of vortical structures at the interface between the
bubbles and spikes. This describes our variation with At-
wood number since the linear growth rate of the Kelvin-
Helmholtz instability vanishes as A→1. This was confirmed
by performing 2D K-H simulations at various Atwood num-
bers.

We draw several tentative conclusions from these simula-
tions. First, potential flow models are accurate in the regime
that they are applicable, namely, for A�1. Second, as A

decreases, they lose accuracy at late times due to the onset of
vortical motion which complicates the bubble shape, and this
is outside their range of applicability—potential flow models
�6� assume a simple parabolic shape for the bubble and solve
for the flow immediately around the bubble tip. For A�1,
significant secondary vortices are generated and it can be
described within the context of the growth of the K-H insta-
bility. The effect of the K-H vortex is twofold—�a� to reduce
the friction drag between the bubbles and spikes, and �b� to
propel the bubbles forward by concentrating a vertical mo-
mentum jet due to the induced flow. The first process can be
understood by considering a wagon as a mechanical analogy.
For A�1, it appears that the wagon has no “wheels”
�because K-H is stable and the drag is high�. For A�1,
wheels are produced by the growth of the K-H instability and
the associated drag is reduced. The second process is docu-
mented in the vortex dynamics literature �29�, and is ex-
ploited by some species of fish to propel themselves. It has
also been invoked as a mechanism of leading bubble accel-
eration �26� in the turbulent RT flow. More simulations and
experiments with �hb /Db�1, A�1� are needed to test and
verify these hypotheses.
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FIG. 11. Results of zoning
study using RTI-3D �a� and
FLASH �b�. Plots show depen-
dence of bubble Froude number as
a function of aspect ratio.
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APPENDIX: NUMERICAL TESTS

To eliminate numerical resolution as a possible explana-
tion for the observed effects, the calculations were repeated
using RTI-3D at grid resolutions of 4, 8, 16, 32, and 64
zones across one wavelength. A similar zoning study was
also undertaken using FLASH with grid resolutions of 4, 8,
16, 32, 64, and 128 zones across the domain. The results are
plotted in Figs. 11�a� and 11�b�, and show clearly that the
effect is seen even at the highest grid resolution of 64 zones/
� and 128 zones/�, respectively. Conversely, the bubble re-
acceleration is not seen at the poorest resolution of 4 zones/
�. At such a low resolution, the K-H secondary vortex does
not develop �Fig. 13�a��, but is snuffed out by numerical
viscous dissipation. This is similar to the suppression of
high-wave number K-H modes at low Reynolds numbers due
to physical viscosity, and is discussed in detail below.

We also performed the following test to characterize the
numerical viscosity in some of our codes. As noted above,
the poorly resolved calculations �4 zones/�� do not exhibit
the late-time acceleration, since the K-H instability is sup-
pressed at such low �numerical� Reynolds numbers. This is
in agreement with the nature of the dispersion curves for
K-H �28�, that show suppression of short wavelength modes
at low Re �here, short wavelength modes are those wave-
lengths �K-H�H, where H is the initial shear layer width; for
a grid resolution of 4 zones/�, H�
, and is larger than the
most dominant K-H wavelength at that Re, which is sup-

pressed as a result�. We verify this by adding to a high-
resolution calculation, in the form of a physical viscosity in
the diffusion term, the additional numerical viscosity that a
poorly-resolved calculation might have �estimated from �5��.
Thus, the 32 zones/� calculation was repeated with an addi-
tional physical viscosity given by


	 = 	numerical,4 zones − 	numerical,32 zones = ���Ag
4 zones
3

− �Ag
32 zones
3 � . �A1�

The results are shown in Fig. 12, and demonstrate that with
the additional viscosity 
	, determined self-consistently
from �A1�, the high-resolution calculations reproduce the be-
havior seen in the poorly-resolved calculation at 4 zones/�,
i.e., the bubble penetrations do not show a reacceleration at
late times. The results from the high-resolution cases without

	 are shown for comparison. The corresponding volume-
fraction contours are plotted �at t=30 s� for the 4 zones/�
and the 32 zones/� without and with 
	 in Figs. 13�a�–13�c�,
respectively. The high-resolution calculation with 
	 shows
a sluglike structure similar to the poorly resolved case, sug-
gesting that �a� the numerical viscosity is well characterized
by �5�, �b� that it is well behaved, and �c� that it mimics the
action of physical viscosity with great fidelity. This is a de-
manding test for the numerical viscosity in our codes.

FIG. 12. Evaluation of numerical viscosity in the MILES codes:
Plot shows that by adding a physical viscosity �	 given by �A1� to
the high-resolution calculations, the highly diffusive result from 4
zones/� is recovered. A=0.1.

FIG. 13. �Color� Evaluation of numerical viscosity in the
MILES codes: Volume-fraction contours at t=30 s from calcula-
tions with �a� 4 zones/�, �b� 32 zones/�, and �c� 32 zones/� with �	
determined from �A1�; A=0.1.
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